From Stanford Medicine:
Any armchair detective knows that DNA left at a crime scene can be a valuable way to identify a perpetrator — either by comparing the collected DNA with criminal DNA databases or with genetic samples collected from suspects or “persons of interest.”
Some criminal databases, however, retain DNA profiles found at the crime scene or collected from suspects even if they are eventually not linked to any crime. In some states, genetic samples are also collected and stored from people who have been arrested, but not necessarily convicted, for certain types of crime.
This process leads to the de facto genetic profiling of many thousands of innocent Americans, say researchers at Stanford Medicine, the University of Virginia and the Broad Institute. They add that doing so may be a significant civil rights infringement.
“We Americans consider our genomic signature to be private,” said Gill Bejerano, PhD, professor of developmental biology, of computer science and of pediatrics. “It’s clear that DNA analysis is an extremely effective and wonderful tool for crime solving. But, if you bank the DNA profile of every person you’ve questioned, you are in effect profiling whole sectors of the population by economic status, geographic location and race.”
Anonymous interaction
Bejerano and his colleagues have devised advanced cryptographic techniques to search for matches while maintaining the genetic privacy of the suspect. After the comparison is completed, checked DNA profiles that don’t match any in the database can be immediately discarded.
The research was published in Nature Computational Science April 26. Bejerano is a senior author along with David Wu, PhD, a former doctoral student at Stanford who is now an assistant professor of computer science at the University of Virginia. The first authors of the study are Jacob Blindenbach, an undergraduate student at the University of Virginia, and Karthik Jagadeesh, PhD, a postdoctoral scholar at the Broad Institute.
“With this technique, we can query the database with an individual’s genetic profile without depositing the information into the database,” Bejerano said. “It’s an anonymous interaction, and that profile lives only on the device on which it was collected. When the agent hits ‘delete,’ that profile is gone.”
Read more about the research on Stanford Medicine.